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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3725

AERODYNAMIC INTERFERENCE OF SLENDER WING-TAIL
COMBINATIONS

By Alvin H. Sacks
SUMMARY

Mathematical expressions are derived for the interference forces
and moments acting on the tails of slender plane and cruciform wing-tail
combinations of general plen form in steady straight f£light at combined
angles of attack and sideslip. The derivations are made within the limi-
tations of slender-body theory under the assumption that the vortex sheet
leaves the wing as a flat sheet and becomes fully rolled up shead of the
tail. The derived expressions are used to calculate the steady lifts,
side forces, pitching moments, and rolling moments of a number of wing-
tail combinations. The effects of changes in tail height, tail length,
ratio of tail span to wing span, teil incidence, and tail thickness are
calculated. The resulting curves, and particularly their nonlinearities,
are discussed at some length in connection with static stability. In
general, the most dramatic effects are noted when the vortices shed from
the wing strike the tips of the tail trailing edge.

An expression is developed for the 1lift of a plene wing-tail combina-
tion vwhich is pitching and plunging, and the associated stability deriva-
tives are calculated as functions of the angle of attack. Discontinuities
in lift-curve slope CLG and, the stability derivative ¢ are noted

for plane wing-tail combinations with high tails if the span of the tail
is slightly greater then the span of the vortices shed by the wing.

Photogra.'phs of the wake of the wing in the presence of the tail, as
observed in a water tank, are presented for & plene triangular wing-tail
combination with & high tail. The measured variation of the lateral
spacing of the wing vortices with distance in the presence of the tail is
presented and discussed in connection with the assumptions of the analysis.
The tail was found to cause an a.pprec:.able inboard shift of the wing vor-
tices for the case investigated.

INTRODUCTION

It is now generally recognized that for wing-tail combinations
involving low-aspect-ratio wings and moderate tail lengths it is not
permissible to neglect the rolling up of the vortex sheet in calculating
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wing-tail interference effects. Since such cases are often encountered
in connection with high-speed airplane and missile designs, some effort
has been devoted in recent years to the calculation of wing-tail inter-~
ference, accounting in some menner for the rolling up of the vortex sheets.

Except for some numerical work in tracing the rolling-up process
itself (e.g., refs. 1, 2, and 3), the distortion of the vortex sheet is
usually accounted for simply by assuming the sheet to be fully rolled up,
and the emphasis has generaslly been on obtaining expressions for the
forces on the tail in terms of the positions of the vortices shed by the
wing (e.g., refs. 4, 5, 6, and 7). In 1948, however, Greham (ref. 8)
actually celculated the varietion of tail lift with angle of attack for
some planar wing-tail combinstions. This was done by expressing the
vortex positions as a function of the angle of sttack under the two alter-
ngtive assumptions of a flat vortex sheet and a fully rolled-up vortex
sheet shed by the wing. Graham's results, which for the slender tail
case were only approximate, showed some interesting departures from the
usually assumed linesr vaeristions. In 1952 Morikawa (ref. 9) investi-
gated the "maximm" wing-body-tail interference (which occurs when the
rolled-up vortices lie in the plane of the tail) by restricting the
analysis to angles of attack near zero and at the same time assuming that
the vortex sheets are fully rolled up. This avoids any consideration of
the nonlinear variation of tail 1lift with engle of attack.

In the present paper, the emphasis is placed on calculating the
variations of total forces and moments with angles of attack and sideslip
for a number of slender plane and cruciform wing-teil combinations and
for some airplane-type arrangements of a plene wing and a horizontal and
vertical tail. Significant nonlinearities are found, and these will be
discussed in some detail with regard to their effects on the static
stability of the various combinations. The lift of a plane wing-tail
combination which is pitching and plunging will also be determined and
the variation of pertinent stability derivatives with angle of attack
will be calculated.

The primary assumption in the present analysis will.be that the
vortex sheet leaves the slender wing as a flat sheet and becomes fully
rolled up shead of the tail. It will also be assumed, as is customary,
that the tail does not influence the positions of the vortices shed by
the wing. The validity of both of these assumptions has been investi-
gated experimentally by meens of a water tank, and these results will
also be presented and discussed.

SYMBOLS

A aspect ratio

b local semithickness of horizontal tail
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maximim chord of wing

distance from wing apex to pivot point
meximum chord of teil

tail length, il-c

distance behind wing trailing edge at which vortex sheet is essen-
tially rolled up

height of trailing edge of horizontal tail ebove wing chord plene

incidence of horizontel teil relative to wing chord plane, radiens
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force in the 2z direction (approximstely 1ift)

rolling moment ebout x axis

over-all length of wing-tail combination

number of external (free) vortices

Dpitching moment about pivot point x = e,

yewing moment about pivot point x = ¢,

anguler rolling velocity about the x axis, radia.ns/sec

angular pitching velocity about the pivot point x = C1,
radians/sec

V + iW
angulsr yewing velocity about the pivot point' X = C3, ra.dia.ns/sec

radius of transformed circle corresponding to wing or tail cross
section

local semispan of wing or tail

airplene cross-sectional area

Plan-form area of wing (area of one wing of cruciform)
maximum semispan of wing (at x = c)

1)

meximm semispan of tail (at x
time, sec

maximum span of vertical tail panel

local span of upper vertical tail panel

local spen of lower vertical tail panel

component of flight velocity along the negetive x axis

component of flight velocity along the positive y axis
(Vo =Ugp if p = 0)

Vo - vlx - cy)

component of flight velocity along the positive =z axis
(Wo = -Uga if D =0)
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W W - a(x - c3)

xmRs distence from wing apex to position immediately behind wing
trailing edge

Xyz Cartesian coordinates fixed in the tail as illustrated in
figure 1(=)

X3 distance behind the wing trailing edge

x! distence behind epex of the teil, x; - d + c'

Y force in the y direction (side force)

Y152, Y and z coordinates of starboard rolled-up vortex
a angle of attack, radians

Ooy angle of atteck at which the rolled-up wing vortices .intersect
the line containing the trailing edge of the horizontal tail

& time rate of change of angle of attack, ra.dia.ns/ sec

B angle of sideslip, radians

I strength of one rolled-up vortex. shed from the wing

'k circulation of kth externsl (free) vortex, positive counter-
clockwise .

4 y + iz

Qk position of kth external (free) vortex, yy + izyx

:
F%
o] fluid mess density
‘o complex coordinate in tra.nsformed_ circle plane
Ok position of kth external vortex in transformed circle plane
Ukr position of kth external vogtex relative to its image in the
transfqmed circle, oy - %

@ o

horizontel-tail thickness ratio (constant for conical tails treated
herein) i
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SUBSCRIPTS
I due to vortex interference
1 tail trailing edge
T tail (when used on forces and moments indicates isolated tail)
THE wing treiling edge

wing

]

SPECIAL NOTATIONS

(counterclockwise) sense
real part

imaginary part

j(‘ contour integral teken once round the cross section in the positive
R
X
M) complex conjugate of ( )

ANAT.YSTS

The present report is concerned with the calculation of ‘the total
aerodynamic forces and moments exerted on some plane and cruciform slender
wing-tail combinations in steady and meneuvering flight. The calculations
will be made within the limitations of slender-body theory and will employ
the techniques developed in references 10 gnd 11. Inasmuch as it was
shown in the former reference that the forces and moments are linear in
the potential (a.lthough not in the motions), it is permissible to calculate
the forces and moments due to vortex interference alone end add them to
those of the isolated wing and tail. Consequently, the major portion of
this report will be concerned with the calculation of the forces and
moments due to wing-tail interference.

It was shown in reference 11 that the components of force and moment
due to vortex interference can be expressed as

YI - iLy = -ipU, zrkdkr Zrk&kr -
k=1
x=1 =XTR+-

1 m
ipf Sa; ka(-)'kr dx + ppf Zl"kdkr (1)
TE k=1

k=1



NACA TN 3725 T

1 m
NI - iMI = ionf (X - C]_) a—?{- Z rk&kr dx +
TE k=1
1 3 m 1 m
ip‘é (x - e1) 5 zrk&kr dx - ppf (x-cl)z:l‘kﬁkrdx
k=1 = k=1
(2)
L' = %. onRf Fra(et) - % PUoRj( Fra(tt) +
x=1 X=X
1 ) m
Lom [ac fraed - om [ & ) roye (3)
TE TE k=1

vhere JR denotes the real part, p is the rate of roll about the x
axis, F' is the complex potential due to the wing vortices end their
imsges in the tail, and “kr represents the (complex) distance between

the kth shed vortex and its image in the transformed cirecle plane.

Evidently, the two essentiel quantities to be determined before equa-
tions (1) to (3) can be applied are the additiomel complex potential F'

and the sum I'y0k, representing the impulse of the shed vortices and

k=1
their imsges.

Although the analyses of references 10 and 11l employed a coordinate
system whose x axis passes through the airplene nose, it can be shown
that the results of those analyses are unaffected by a normsl tremslation
of the x axis provided that the cross-sectional ares satisfies the condi-
tion S = (dS/dx) = O at the airplene nose. This condition is satisfied
by all the wings of the wing-tail combinations to be treated in the present
analysis, and it is convenient for our purpose here to use a coordinate
system fixed in the tail as illustrated in figure 1(a).

It can be seen from equation (1) that for steady straight flight
[p =(3/3t) = 0] the interference lift and side force are independent of
the plan forms of the wing and tail. Consequently, the calculated curves
of steady 1lift and side force presented in this report are for slender
wings and tails of arbitrary plan form except that their trailing edges
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must lie in planes normal to the x axis. On the other hsnd, eque-
tions (1), (2), and (3) show that the 1lift and side force in unsteady
flight and the moments in steady flight require integrations over speci-
fied plan forms. The calculations of steady moments and of unsteady
1ift presented in this report have been carried out for triangular plan
forms only.

STEADY STRAIGHT FLIGHT

In this portion of the analysis we shall specialize equations (l)
end (2) to steady straight flight by setting p = (9/dt) = 0. The last
two terms of each of these equations are thus eliminated.

Plane Wing and Cruciform Tail

For most of the wing-tail cambinations to be treated here, the wing
is taken as a planar, slender, pointed thin wing having its maximum span
at the trailing edge which is assumed straight. In all cases, the tail
is considered rigidly attached to the wing. It is also assumed that the
vortex sheet leaves the wing as & flat sheet at the trailing edge and
becomes fully rolled up into two discrete line vortices somewhere ahead

of the tail.

It is further assumed that the tail does not influence the vortex
positions. The validity of this assumption has been investigated experi-
mentally and will be discussed in a later section of this report. For

Rolled-up vortices
€
Uo"& l J
2y im
S,,Tg\

such cases, then it can be seen from sketch (a.) that the vertical posi-
tion 2z; of both vortices relative to the horizontal tail is given by

X,

Sketeh (a)

zy = (o - €)xy - by - (& - x3)igp ()

where the angie € 1is easily computed by calculating the velocity of a
two-dimensional vortex pair placed at the centroids of vorticity of the
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wing. 8Since this procedure places the vortices (:t/2)so apart, due to
the elliptic circulation distribution (which is unaffected by sideslip)
the angle € is found to be equal to (2/x%)ay,. It should be mentioned
that the positions calculeted in this wey are in good agreement with
those observed experimentally behind a wing alone, as pointed out in
reference 12, even though the details of the rolling up have been ignored.
The lateral positions (in body axes) are evidently

V=% % - B3 Ya=-fso-fn (5)
where the subscripts 1 and 2 on y refer to the starboard and port vor-

tices, respectively. Thus the positions of the two rolled-up vortices
at a distance x; behind the wing are completely defined by

. (6)
£, = o +izl=-)’fso-i(hT+diT)-xl B-i[aw 1- fz')"‘iT]}

The magnitude of the strength I' of each of the rolled-up vortices

is obtained by equating the impulse of the vortex pair to the lift of
the wing, that is,

2
pULT 12‘- 8o = Ly = npUy agy8sS
or )
P_= EUOG‘WSO (7)

It is noted that for the fully rolled-up vortex pair m = 2 and
Iy = -Ty = -T' (see sketch (b)). Finally, in order to calculate the

t
I, =-T 1
C ol
(9 1
-5 8
-1;2
Sketch (b)
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m
sum Zrkakr: the transformation of the tail cross section to & circle
k=1

(leaving the flow field at infinity unchanged) is required. Such a
transformation for the class of cross sections shown in sketch (b) is
given in reference 10 as '

22
§2_82=[.;.(h-f)+a-@:_6z_)_] (8)
and
i' _h+¢f
oy
where

h=xs2 + £,% ; f=~]sa+t22

so that the inverse transformetion relating the vortex positions in the
two planes is -

Uk=-)]f i<~/82+t12-~/32+t22>-2' i - 82 +

j[i (x/—s—z+t12-~fsz+t22>-2~/zf-_s2]2; [Jé§+t12 +Js—2+'t22:|2
| (9)

In writing the transformation in this form, we require that square roots
of complex quantities be evaluated in the manner of the eppendix. The
proper signs are thus automatically taken care of.

m
The sum Zrk"kr can now be determined from equations (7) and (9)

k=1 -
if it is recalled that

O, = Ok - = : (10)

With the expression for this sum, then, all the force and moment compo-
nents except the rolling moment can be calculated directly from equa-
tions (1) and (2) for the wing-tail combinations discussed sbove. It



NACA TN 3725 : 11

m
will be noted that the above expressions for the sum Zr‘kakr have been

=]
developed only for the fully rolled-up vortices. However, between the
m
wing and tail, since there is no body, the impulse PUozrk“kr is inde-
k=1

pendent of the wake shape, being always equal to the 1lift of the wing.
Therefore, it has only been assumed that the vortices become fully rolled
up somewhere shead of the tail.

The following paragraphs will be concerned with the actusl calcule-
tions relating to the longitudinal, directionel, and lateral stability of
several wing-tail combinations falling into the category discussed in the

forégoing analysis. The determination of the integral “ f F'd(CE) will be

carried out in the discussion of lateral stability since it arises only
in the calculation of the rolling moments.

Longitudinal stability.- Since the vertical tail has no effect on the
purely longitudinal (p = O) aerodynemic characteristics of the wing-tail
combination, we can for this discussion set t, = tz = O, thereby simpli-
fying the celculations. In fact, since equation (8) then reduces to the
Joukowsky transformation, the addition of ellipticel thickness to the
horizontal tail offers no difficulty and will be incorporated. Thus the
expression for o) to be used for calculating the longitudinal charac-
teristics will be (see sketch (c))

L 3

§2='1 gl

e TN
[ =~

Sketch (c)
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% = % [_gk + Jt® - (s - ba)] (11)
and
s+b
ro = >

The thickness of the tail will be kept small in the calculations, in view
of the assumption that the teil does not affect the vortex positions.

The wing-tail combinations treated in this section will have the general
appearance shown in figure 1(b). The wing is shown as a triangular flat
Plate and the horizontal tail is shown as a thin elliptic cone since these
assumptions will be made in the calculation of the pitching moments.
However, they will not be made for the calculation of the steady 1lift
since equation (l) shows that the interference 1lift and side force in
steady straight flight are independent of plan form.

If it is noted that, due to symmetry (see sketch (c)) o, = -G, the

2
sum ZI‘kckr over the tail can be written directly as
k=3

2
ZPkakr = [0, + Fa“zr=f'<°1r + Elr> = 2R (crlr) (12)
k=1
But from equations (10) and (11) we have

r02
O'l = 0'1 -
ol G

%{gl + 8.2 = (s - 1;2) - (—:—‘f—lﬁ)[ﬁl - B - (52 - bz)]} (13)

so equation (12) becomes

irkokr — {Cl +~/§%2 - (2 - b2) - ':_t%)[;l - “/(';12 - (&2 - b2):'}

k=1
(1%)
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Returning now to equation (1) we have for steady straight flight

m m
I1 - Ly = -1ipU, Zl’k&kr - kaakr (15)
k=1
x=1

k=1
—ATE+
and, by virtue of symmetry for $ = O, the interference side force YI
vanishes. (This also follows from eq. (14) which shows that the above
sums are reael.) The interference lift Ly 1is given by the negative of

the imsginary part of equation (15).

m m
L1 = PUR er"kr - Zrk"kr (16)
x=1

k=1 k=1
X=XTR

which can now be evaluated from equations (6), (7), and (14). That is,
from equation (6), R({,) = (x/4)so for all x and we note that imme-
diately behind the wing s = b = 0. Thus it follows from equations (7),
(14), and (16) that .

__k TEN s
Ly = m pUo S Rj§112 - 8y ( - ’s—2>1 - ﬁ S0 (17)

vhere s, is the semispan of the tail at its trailing edge. The quan-
tity gu gives the position of the starboard vortex et x = 1 and is

evaluated from equation (6) by setting B = O and X, = d. The total 1lift
of the wing-tail combination is obtained by adding to equation (17) the
lifts of the wing and tail alone as given by slender-body theory (see

eq. (7)). The resulting expression for the 1lift coefficient, based on
the area of the wing, is

2
T B4 2chtaw Cll g.2 -b2
CL=-A<Gw+ 2>+ R/—-—l (l-—)-£
5 hw p 802 1- (b/s)l 502 802 521 N

and it can be seen that, to the order of the present analysis, tail

thickness affects the 1lift only if the tail has a blunt trailing edge.
The procedure for calculating the real part of the square root without
anbiguity has been discussed in Appendix B of reference 11. ‘
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By making use of the same substitutions in equation (2) as were used
in equation (l) for the interference side force and lift, one finds simi-
larly that the interference yawing moment vaenishes (for B = 0) and that,
after integration by parts, the interference pitching moment sbout the
pivot point x = ¢; can be expressed as

- 3 ( )R\/ il 2( s
My = = ——— pUgaysol{ 1 - ¢ 4 -8 -2) -
T 1- (ofs) g e * 82/}

fs°<7. - ¢y - c'> -fc'R\/Clz - 82< - %Z-) dx' (19)
o

provided that b/s is constant over the tail.l In this expression c'
is the chord of the tail and x' is distance along the x axis measured
from the apex of the tail. Now let us choose the pivot point to be

cy = 2/3 ¢ and the plan forms of wing and tail to be triangular. Then
the triangular wing contributes no pitching moment, and if we add the
known pitching moment of the conical tail alone as given by

Mp = -Lp d+% - %) = - 1pUg cups 12 <d+-§'- - %1 (20)

the resulting expression for the total pitching-moment coefficient » based
on the wing ares spc and the wing chord c is

R 83 /a .1 1c'
Cm = - 3 Avap S5 —+“-§‘-c"'>-

s°2 c 3
Ay (d 1 jglzz 512 2\ gfa,1 ¢
o | @R 5051319
c! 5
Ay So €1 s2< b2 (x'
xR -0 -2 (=)
o

The integration indicated in equation (21) is most easily carried out if
the real part is teken after the integration. With this in mind, then,
we observe that the variable x' is related to x; by (see fig. 1(b))

The corres onding expression for arbitrary chordwise thickness
distribution (b/g # const.) can just as easily be obtained in the same
way, but the calculated results will depend on the particular shape chosen
and the integrals will in general have to be evaluated by numerical or
graphical methods for each case.
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X, =x'+d-c¢c' (22)

and thet for the conical tail s/so = (Ap/%)(x'/sy) and b/s is constent.

Hence, by means of equation (6), the complex square root in the integrand
can be expressed as

2 2
i 2 1_§>=j3+c(§4>+n(§l> =X (23)
802  8o2 8 C e

where

R R o NCEE |

oo Dt D)
THCCHIEE 108 |
end the integral in equation (21) can be expressed in the form

e’ ' o

f R VX at = %‘— [(2D§+C)~b_(+ 4BD - ¢ Zn(\/—+§~/_+ J._]SO

(o]

un[ R (2Dt + C)R VX - L(2Dt+C) INT +

(hBD Cz)R.'l.n (J_+ §ﬁ+—ﬁ>

1I(L‘BD'C>IZn<~l—+§~/_+ Vol ].5—0 (25)

vwhere £ = (x'/so). Now if any of the terms in this expression has a
discontinuity within the intervel of integration the integrsl must be
divided at that point. Such discontinuities will in fact occur if the
rolled-up vortex passes through the horizontal tail. This occurrence
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will be discussed later from the physical point of view, but for the
moment we need only to recognize that the mathematical expression of this
situstion is (for a triangulsr tail) .

z, =0 for l<x—'<3:- (26)

where 2z, is given by the imaginary part of equation (6). The variastions
of RNX and INX for a typical case in which equation (26) is satisfied
are shown in sketch (d) and it can be seen that at & = §o (the value of
x! / 8o at which 2z, is zero) the real part of the square root vanishes
and the imaginary part has a discontinuity.

Sketch (d)

Thus, maeking use of the continuity, of the real part of the square
root at E = go , and writing out the real and imeginery parts of the



logerithm, we can finally write equation (25) in the form g
B
c' 1
% fo & 4
f RJia§=f RVJX at + RNX & @
o o 3 &
>0
= %{G] 1 - 'l—[G] Lé,(um - ¢%) 'f'.ﬁ.l'qrf-r eND + L I -
D =S_ Up =0
£=5- 3 hD\ oJD /\ aﬁlgo_
1T + eV + == -I(2D§+c)(14i' - VX -
2“5 go- §O
Eot
o (J_+§ 2@) I(Jf+§~lﬁ+2—3?>
I ll'BD - C ta.n ta.n.—l + Enﬂ
EJD- R/'VIE -+ §'VI_D + _C_f_\ R/NFE + ﬁ’v’i* ;\
25/ L™\ 2D/
go" §o+
(262)
wvhera 0 d1ig iden +ipcal ith +the qnnvﬁ--l-f--!r in the braclkata of nq“n'l"lnn (9;\ and tha gn'hnn'r"l'n'f‘n
Eo- end E,+ refer, respectively, to values immediately before and a.f'ber the d:l.scon‘b:l.nui'by. The value
of n (a.n integer or zero) ils determined by the fact that the resulting expression for the integral
must be & contimious function of oy since B, C, and D are continuous functions of oy,
Calculations bave been carxled oub by means of equation (18) and equations (21) through (26a) to bt

determine the total lift and pitching-moment coefficients of a number of wing-tail combina‘tions of +the
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type shown in figure 1(b). It can be seen from equations (18) and (21)
(recalling eq. (6)) that the theoretical 1ift and pitching moment are
nonlinear functions of the angle of attack o. In view of this fact,

it seems appropriate to postpone temporarily the calculation of stability
derivatives and to calculate instead the actual variations of forces and
moments with angle of attack. For the present calculations, the aspect
retio of both wing and teil was chosen as 2 in all cases, and the effects
of horizontal tail height hq, tail-span-to-wing-span ratio s,/sq, tail
incidence imp, horizontal-teil thickness ratio b/s, and tail length 4
have been investigeted. The calculated results are presented in figures 2
to 6 and the lift coefficients are divided by (n/2)A, since equation (18)
shows the 1ift coefficient to be linear® with respect to the wing aspect
ratio Ay. The pitching moments are nonlinear in Ay since equation (21)
contains products of Ay with d/c and c'/c which are themselves propor-
tional to Ay since all quantities are specified in terms of the wing
semispan sg.

The effect of horizontal-tail height on the 1lift and pitching moments
is illustrated in figure 2 for zero tail incidence and zero tail thickness..

It can be seen from equation (17) that for b/s = 0, the interference 1lift
becomes equal and opposite to the Lift of the wing if R /Clza - 5,2 = 0.
This condition is satisfied if gll is real and less than s,, that is,

if the rolled-up vortices from the wing just intersect the trailing edge
of the tail. In figure 2, the tail heights have been chosen so that this
situation occurs at simple values of ay, and it can be seen that, in
each case, at that angle of attack the total lift is equal to the lift of
the teil alone which is equal to the lift of the wing since the tail span
is equal to the wing span. It would appear from figure 2 that unless the
horizontel tail is placed either low (hT < 0) or very high, the lift and
pitching-moment curves are apt to be highly nonlinear, even in the rela-
tively low positive angle-of-attack range. Severe static instability
precedes the "eritical" angle of attack (the angle of attack at which the
wing vortices intersect the tail trailing edge) and asbrupt changes in
both lift-curve slope and static stability are observed at the critical

angle.

While the sharp breaks in the 1lift and pitching-moment curves indi-
cated by the theory will no doubt be smoothed out somewhat in actual
flight through & reel fluid, it might be well to consider the signifi-
cance of the criticel angle of attack described ebove. First, the
existence of such a well-defined critical angle is predicated on the
assumption that the vortices shed from the wing lie in & horizontal line
when viewed in planes x = const., that is, that the vortex sheet either
remains flat or is fully rolled up ahead of the tail. In such & case,
the tall experiences e maximm download when the line containing its

27+t must be noted that the equations also show the lift and pitching
moment to be nonlinear with respect to all of the paremeters investigated
in the calculations. The calculated effects of the separate parameters
are therefore not additive.
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trailing edge intersects the vortices, as the tail is then in a maximum

downwash field. Such a critical engle might be thought of as a loeal

stall angle for the airplene and will be predicted by the theory for all

slender plane wing-tail combinations whose wing and tail do not lie in

the same plene. It might be said that if the wing and tail lie in the

same plane, the critical angle is zero, but since the downwash is then
also zero, the angle has little significance.

The critical angle of attack can be calculated directly from equa-
tion (6) by setting =z (i.e., the imaginary part of &, or ) to zero
at x, =d. Thus one finds

hp/so

(d/so)[l - (2/n2) 1

for the combinations treated in this section. Evidently, then, acyp
depends on the ratio of tail height to teil length and will be positive

if the tail is above the plane of the wing and negative if the tail lies
below the plane of the wing. For the former case (high tail), the tail
will experience a maximm download, causing a peak positive pitching
moment, while for the latter case (low tail), the tail will experience a
meximum upload, causing e peak negative pitching moment. These two types
of cases are clearly seen in figure 2. The critical angle of attack can
of course be made larger than the stall angle of ‘the wing itself by
placing the tail very high. In figure 2 for hT/s0 = 1.9137, for example,
the 1lift and pitching-moment curves remain fairly linear up to an angle
of attack of ebout 10°. It should be mentioned with regard to the above
discussion that, if the vortex sheet is only partially rolled up at the
tail location, the vortices do not lie in a horizontal line there, the
criticel angle of attack loses definition, and the 1ift and moment curves,
although nonlinear, will not exhibit the sharp breeks discussed gbove.

(27)

Oer =

In figure 3, the ratio of tail span to wing span is varied for a
given tail height. It can be seen that the 1lift and pitching-moment
curves exhibit sharp peaks when the ratio of tail span to wing span
becomes equal to or slightly greater than ﬂ/h (the ratio of vortex span
to wing spen). That is, once again, the curves have sudden changes in
slope if the wing vortices strike the tail trailing edge near the tips.
Thus, it might be said that there is a critical ratio of tail span to
wing spen as well as a critical angle of attack. However, it should be
pointed out that the specific value of n/h is & consequence of several
assumptions; namely, (1) thst the vortices are_fully rolled up shead of
the tail, (2) thaet the tail has no influence on the vortex positions,
and (3) that the trailing-edge cross section of the tail is fully effec-
tive in destroying the dowmwash field of the wing, even though the chord
of the tail vanishes at the tips. This last assumption is associated
with the slender-body assumption that the flow in planes x = const.
is essentially two-dimensional. }

The sign of the pitching moment at the critical anglé of attack can
be determined from the ratio of tail span to wing span, provided this
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ratio is equal to or greater than the critical ratio. It has already
been pointed out that the 1ift of the plene wing-tail combinstion at the
critical angle of attack is equal to the 1lift of the tail alone at its
geometric angle of attack, if the tail span is at least as great as the
vortex span. Therefore, the 1lift on the tail of the combination is equal
to the difference between the lifts of the isolated tail and wing at
their geometric angles of attack. Bub, according to slender-wing theory,
these lifts depend only on the maximum spans of the wing and tail. Hence,
it can be concluded that if the span of the tail is less than the span of
the wing, the lift on the tail at the criticel angle of attack is negative
and the pitching moment of the combination is therefore positive. Since
it wes stipulated above that the ratio of tail span to wing span was

greater than the critical value, the conclusion is that for “’ < —l <1,

the pitching moment at the critical angle of attack is positive. 811 the
other hend, if the tail span is greater than the wing span, the 1ift on
the tail is positive at a = aer, so the pitching moment of the combine-
tion is negative. Finally, if sl/so = 1, the 1ift on the tail, and
hence the pitching moment of the combinstion, venishes at the critical
engle of attack.

The gbove conclusions mey be summerized schematicelly as shown in
sketch (e). It cen be seen that in the first case there are three trim

+ + +
Crn Cm Cm
N\
\cz. a o
- T<Brog - 8159 - 51 _,
L = 50 S0 8o
Sketch (e)

points, two stable, and one unstable; in the second case there is only
one trim point, which is stable; and in the third case there are two trim
points, one steble and one neutrally steble. In the above discussion,
the tail incidence has been assumed to be zero. It has also been assumed
that the pitching moment of the wing alone is zero, which is the case for
all the combinations treated in this paper.

The effect of changes in tail length on the lift and pitching-moment
curves is shown in figure U for two tail heights with the tail at zero
incidence and the tail span equal to the wing span. For zero tail height
(fig. 4(a)), the predominant effect of increasing the tail length is
apparently the larger pitching moments due to the increased lever arm.
However, the Llift on the tail at a given angle of attack is also seen to
increase with the tail length. This is due to the greater vertical dis-
tance between the tail and the wing vortices, which results in a reduction
of wing-tail interference.
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For the case of a given nonzero tail height (fig. 4(b), hp/sg=0.9568),
the most obvious effect of & change in tail length is a corresponding
change in the critical angle of attack. It can be seen that reducing the
taill length ratio d/so from 6 to 4 increases g, from 0.20 to 0.30,
as predicted by equation (27). Now it is interesting to compare fig-
ure 4(b) with figure 2 in which oy, Wwas changed by a change in tail
height with a fixed tail length. Let us say, for example, that we start
with a wing-tail combination baving /sy = 6 and ap, = 0.2, and we wish
to shift ooy 10 0.15. A comparison of figures h(bg and 2 shows that,
if this shift is accomplished by increasing the tail length ratio to 8,
the resulting pitching moments are about 50 percent larger than if it is
accomplished by lowering the horizontal tail.

In figure 5, the tail incidence is varied at two different tail
heights for a fixed tail length (d/sg = 6) and a fixed span ratio
(51720 = 1). It can be seen that for hp = O (fig. 5(a)), the 1lift and
pitching-moment curves are shifted linearly up and down with tail ineci-
dence. Since the curves are slightly nonlinear in the angle of attack,
however, the result is e slightly nonlinear veriation of trim 1lift coef-
ficient with control setting (for an all-moveble tail). Now if the tail
does not lie in the plane of the wing, (hp/sg = 0.9568, fig. 5(b)), the
nonlinesrities in the 1ift and pitching-moment curves, and hence in
control effectiveness, become more pronounced. It can be seen in fig-
ure 5(b) that the change in trim angle of attack from ip = 0 to ip = -0.1
is more than twice that from ip = +0.1 to ip = O. Also, there are evi-
dently incidence settings between O and -0.1 for which there will be three
trim angles of attack, as in the preceding discussion.

The effect of tail thickness is shown in figure 6 and the effect on
the 1ift and pitching moment for zero tail height (fig. 6(a)) is seen to
be small for the configuretion chosen. However, there is a consistent
decrease in tail 1ift associated with the increase of tail thickness.

For the high-tail case (fig. 6(b)), this effect is megnified at positive
angles of attack, with the result that the nonlinearities due to tail
height increase with tail thickness. It should be recalled +that the tail
thickness introduced here is of a very special type (elliptic cone tail)
and incorporates a blunt trailing edge. The present theory would predict
no effect of thickness on the 1lift and only a smaell effect on the pitching
moment if the tail trailing edge were sharp. On the other hand, ordinary
slender-body theory (i.e., with no wing-tail interference) would predict
no effect of elliptic thickness on either the 1lift or the pitching moment,
regardless of whether the trailing edge is blunt or sharp (see ref. 10).

Directional stebility.- In this portion of the analysis, the empha-
sis will be on the effectiveness of the vertical tail, and we turn to a




20 NACA TN 3725

somevhat more special class of wing-tail combinations as shown in
sketch (£) although the plan forms need not be triengular. Thus we let

- ~

Sketch (f)

ts = 'b/s = 0. The inverse transformation of equation (9) then gives the
vortex positions in the o plane as

uk=-% i(Js2+—t12- )-2m+
j[([—t— _ ) 2J§'k—_] [j_Tt’“ ] (28)

and §, is again given by equations (6). Now, by direct substitution
into equation (10) with the auxiliary formulas of equation (8), it can

be shown that3

87he getusl evaluation of the imaginary part of the square root
indicated in equation (29) is not entirely straightforward if embiguities
are to be avoided. Consequently the procedure is given in the appendix.
Taking the real part of the simpler square root has been discussed in

Appendix B of reference ll.
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R (o) - B.Jo" - 5°

()< 31 [l - ) - e ]

(29)

and with these expressions one can easily write the real and imaginexry
2

parts of the sum zrkckr from which the interference lift and side

k=1
force can be obtained directly by means of equation (15). It cen be
seen from equation (29) that the real part of the sbove sum is independ-
ent of t,, so it follows from equation (15) that the interference lift
is independent of the size of the vertical tail, even for B 7! 0.

The 1ift of the wing alone is given by equation (7) and the side
force and 1lift of the tail alone are given by (see ref. 10)

2
Yp - ilq = "F‘Uoz[g (512 - EZ— - 83 ./812 + 1:02) - imrslz] (30)

This side force and 1lift when added to equastion (7) and to the interfer-
ence forces calculated by means of equstions (15) and (29) yield the
total side force and 1lift on wing-tail conbinations of arbitrary plan
form of the type shown in sketch (f) at combined angles of attack and
sideslip.

Calculations have been carried out in this manner to obtain the
variations of side force and 1ift coefficients, based on wing area, with
angle of attack and sideslip for several vertical tail sizes with zero
tail height and tail incidence (hp = im = 0). These calculations were
made only for one ratio of tail spen to wing spen (s,/s, = 1) and one
tail length ratio (d/so = 6) inasmuch as the effects of these parameters
mey be surmised from the previous discussion on longitudinal stability.
The results are presented in Ffigures 7 and 8 in the form of force coef-
FPicients against sideslip angle for various angles of attack. Tt can be
seen from figure 7 that at the very small angles of attack, the side
force is linear with respect to the angle of sideslip.; In fact the values
of the slopes there are given by ordinesry slender-body theory for the
tail alone. At somevhat larger angles of attack, however, the curves are
quite nonlinear and it will be noticed that the angle of attack at which
‘the curve is most nonlinear increases with the tail size. It can in fact
be shown that the most severe nonlinearities occur at such an angle of
attack and sideslip that one of the rolled-up vortices from the wing




ol NACA TN 3725

strikes the tip of the vertical tail, since in that situation the vertical
fin experiences & maximum side force due to the vortex. The angles of
attack and sideslip corresponding to this condition are given, according
to the present theory, by equations (6) if we set &, or §, equal to

ity at x3 = 4. Thus we find

poz . o (ofsg) + (bo/so)

= 3 (31)
dfsq (a/s0) (1 - 2/2)

In order to facilitate the fairing of the curves in figure 7, the
angle of sideslip given by equation (31) was calculated for the cases
shown in the figure, and the corresponding side forces were computed.

It will be noted that if the angle of attack is less than that of equa-
tion (31), then one vortex strikes the trailing edge of the verticel tail
at the angle of sideslip indicated in equation (31), thus causing a sherp
peek in the wvariation of Cy with B. On the other hand, at angles of
attack higher than that of equation (31), the vortex passes above the
vertical tail and the variation of side force with angle of sideslip is
smooth although nonlinear. In figure T(b) we see a very sharp pesk in
the curve for o = 0.20 which corresponds almost exactly to the angle of
attack indicated by equation (31) for the vertical teil size to/sl = 1.0.

Another important point regarding figure 7 can be seen by observing
the variation of the slope (BCY/BB)B=O with angle of attack, since this

quantity gives a measure of the directional stability; that is, since
the vertical tail lies behind the probable center of gravity of the air-
plane, a positive Cy, corresponds to a negative CnB vhich is unstable.

Thus it cen be seen from the slopes through the origin in figure 7 that
increasing the angle of attack has & destebilizing effect for angles of
attack below the value given in equation (31). It should be mentioned
here that, according to slender-body theory (no interference), the sta-
bility derivative (acY/ap)B=o is independent of the angle of attack.

The variation of lift coefficient with angle of sideslip is given in
figure 8 for various angles of attack. As was mentioned earlier, the lift
is independent of the size of the vertical tail. It is observed that the
lift is a minimm at B = O due to the fact that the horizontel tail is
then in e maximum downwash field. Again, the effect of sideslip is felt
only at the tail, so it can be concluded that at B = O the pitching
moment has a positive maximum; hence sideslipping produces a nose-down

pitching moment.

In order to see a little more clearly the effect of angle of attack
on directional stability, approximate calculations have been made of the
derivative (Bcn/BB) -0 at various angles of attack. It can be seen from
equation (2) that a detailed calculation of the yawing-moment variation
and subsequent differentiation with respect to B would be virtually
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impossible by analytical means in view of the complicated expression of
equation (29). Consequently, rather than performing leborious numerical
calculetions and measuring slopes graphically, we shall simply assume
that the center of pressure of the tail is unaffected by the wing vortices
and lies always at the 2/3-root chord of the tail.4 Hence, since the
flat-plate wing experiences no side force, the derivative Cn, 1is given
approximately (for c'/c =1 and d/s, = 6) by B

Cng = (3Cn/3B)gq = - (a/280)(3Cy/dB) gy = -3(C¥/3B) gy  (32)

vhere the yawing-moment coefficient is based on the wing span 2s, and
the slopes (80;?35)6_0 are measured on figure 7. The resulting varia-
tions of Cp, with angle of attack are shown in figure 9 and it can be
seen that anBincrease in vertical teil size provides substantial increases
in directional stability but that the directional stability diminishes
considerebly with increasing angle of attack. For the cases calculated
(sl/s0 = 1), it is observed that at about 10° angle of attack the sta-
bility contributed by a vertical tail the same size as one panel of the
horizontal tail (to/sl = 1.0) is equal to the stebility contributed by

& verticel tail only half that size at o = O.

As was mentioned earlier, a negative value of Cp_ indicates direc-

tional instability, but in no case has a negative value been shown in the
above figures. It might be well to consider now the likelihood of such
an instability. PFirst it will be recalled that the strengths and posi-
tions of the rolled-up vortices were calculated under the assumption that
the circuletion distribution at the wing trailing edge is elliptic, as
predicted by slender-body theory for low angles of attack. In order to
gain some idea of the effect of changes in circulation distribution, it
wes assumed that the circulation distribution tends toward a triangle at
‘the higher angles of attack, as does:the span loading at B = O according
to low-speed experiments on triangular wings. Thus, keeping the same
1ift on the wing as before (eq. (7)), with a triengular circulation dis-
tribution, the lateral spacing of the vortices becomes equal to s, and
the strengths then become in the same manner as equation (7),

T = qUgasq (33)

s a rough check on this approximation, the pitching moments were
calculated in this manner for several span ratios with hT/so = 0.9568,
d/so = 6 and were compared with those shown in figure 3. The average
error for these cases was of the order of 10 percent for the angle range
celculated. For shorter tail lengths, the error will of course be larger.
It should be noted that with this approximation the dependence of the
moments upon plan form is contained in the choice of the center of pres-
sure of the tall. The choice of the 2/3-root chord -implies a triangular
tail. -
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Using this strength and spacing, then, the variations of Cy and Cy,
with B for tg/s; = 1 were recalculated at o = 0.2h and the results
are given in figures 7(b) end 8. It caen be seen that this change in
circulation distribution has megnified the effects of sideslip and has
produced a decidedly unstable side force slope at B = O. The effect on
the variation of 1ift, however, is small.

On an actual airplane or missile, a long fuselege whose nose is well
eheed of the wing would further reduce the directionel stebility, although
no calculations of this effect can be made here because of the complicated
influence of the fuselage on the positions of the vortices at the tail.
Thus it can be seen that the curves presented in figures 7, 8, and 9 are
probebly not unduly pessimistic.

As was mentioned previously, the greatest loss of directional sta-
bility due to wing-tail interference is suffered when the angle of attack
is such that at some angle of sideslip one vortex strikes the tip of the
vertical tail. The sign of this angle of attack can be reversed simply
by inverting the tail assembly as shown in sketch (g) . With this arrange-
ment, the loss of directional stability cen more easily be moved out of

Sketch (g)

the flight range of angle of attack. The calculated curves of CnB

ageinst angle of attack are shown in figure 9 and are seen to be reflec-
tions about the a = O axis of the curves obtained with the verticel tail
above the horizontal. The arrangement shown in sketch (g) has obvious
disedventages in other respects, of course, as for example a negative
dihedral effect and complications of the practical landing gear problem.
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Latersal stability.- In this portion of the analysis we shall be
concerned with the variation of rolling moment with sideslip angle at
various angles of attack. According to equation (3), the interference
rolling moment in steady straight flight is

_ 1 &
L' = -Jé- pUR ‘f_ZF'd(QE)- %— pUR éxm Fra(tt) - pR{E Ekz.rkdkr dx
= o =

(34)
and it is seen that the real part of the integral f Fra(tf) is to be

evaluated at x=1 and at x = o« It mst be noted here, however,
that the contour integral is to be performed round a contour enclosing not
only the airplane cross section but also the stream surfaces forming the
vortex sheets, This is because of the development in references 10 and 11
vhere (a) the boundary condition required that the contour of integration
be composed of stream surfaces and (b) it was decided to enclose all the
external vortices within the contour in order to simplify the treatment of
the analytic integrals. Here, since the nonasnalytic integrand conteins
logarithmic singularities outside the body, there will be a contribution
to the integral along the branch cuts representing the vortex sheets.

To illustrate the application of equation (34), we shall confine our
sttention to flabt-plate wings and symmetric cruciform tails, as shown in
sketch (h). The plan forms, however, need not be triangular. In the

Sketeh (k)
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present case, since the external vortices arise from a separate wing,
there is a vortex sheet common to both vortices and across which the
potential differs by a constant, nemely the circulation I'. Therefore,
since the sign of d(tf) is opposite on the two sides, the contribution
to0 the nonanslytic integral along this cut, regardless of its shape, is
found to be

t=t,
waa(gz) - R f- ra(y2 + z2)
vortex t=t
sheet 2

= —I‘(yl2 + 212 = y22 - 222) = -P(ylz - y22) (35)

since from equations (4) and (6) 1z, = z,.

As for the remaining contour integration round the airplane cross
section, it will be convenient to perform that in the transformed o
plene where on the circle o0 = ro2. The transformation for the symnetric
cruciform tail of sketch (h) is obtained from equation (8) by setting
t; = t5; = 8 so0 that

(2 = o2 + 2 (36)
and ro, = s/J3. It Pollows, then, thet on the circle where o= roeif
d(g;) d; de + § —E do
= ill-r02 sin 29 a9 (37)

Now, recalling that F! is the additional complex potential due
to the shed vortices and their images, we can write F! in the o plene
as (see sketch (b), page 9)

y o _ iF roZ ro?
F —-gl:ln(c-cl) -zn( --r]_)-ln(o‘-o‘z) +ln@-%?:->]

(38)
and it is seen from equations (37) and (38) that the contribution of the
starboard vortex and its image to the real part of the contour integral
round the tail cross section is made up of integrals of the type

[?,n(o'-0'1>- Zn(a-%oiz-:lsin 20 4o
(39)

or, since the rea.l and imsginary parts of o on the circle are given by
T = rocos @ and 1 = rosin 6, it is found that

- orr 2
R fF'd(!;!.) =TI, = —=°
tail
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T
orr . sin - O L sine-:nal
- r -
I, = Oftan —-——?‘Jl_ ~tan rol,rl gin 20 d9 (%0)
cose-i:g cose-—E‘E‘

vhere Ti = rijcos 63 and 1, = rysin 63 are the coordinates of the star-
board vortex in the o plane, The entire integral round the circle is
mede up by choosing the proper sign of equation (37) and therefore of I
appropriate to each half-quadrant and combining the resulting definite
integrals, Since each half-quadrant of the circle corresponds to a partic-
ular surface of the cruciform tail, the signs are easily chosen by observ-
ing that a(tf) = a(y® + 22) and deciding whether this quantity is positive
or negative in each helf-quadrant as the contour of the cruciform tail is
circumscribed in the counterclockwise sense in the physical plane. The
resulting expression for the real part of the integral round the tail due
to both vortices is found in this manmer, after integration by parts, to be

1‘14

sfrn - I =

1452, 20
Tal, <l 1‘14'> n ro*  rf| \_
2 4 4 T
T T r an
° R ER etk e
To Yo

x 4
2
T EEC)
1l+— =35)~-
a("za"'*)
o4 ll.'l'g'qa
1'21]2 r°4 1‘02
ro2 (l > r2* "'2"12 (41)
r°2

where
T1

R(o1); ny = I(o1); T2 = R(o2); 1y = X(o2)
112 = [R(01)]1®2 + [ X(o1)13; x2% = [R(02)]1%2 + [X(02)1% .

and the arctangents are taken to lie between O and 2n, Note that the
expressions of equations (35) and (41) both venish at x=xpm, so that

Rj[ Fra(tt) = 0; also, at x =1, y12 - yo2 = -nsoBpd  from equation (5).
x=x;_EE+
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Turning now to the lest term of equation (34), if we rewrite the
transformation of equation (36) in the form
r02 2

(2 - 52 = (o - 2 (2)

since 1,2 = 82/2, it follows directly that the vortex positions in the
¢ plane are given by

T (43)

Hence the quantity Ok appearing in the summation of equation (34) is

2 = =
Ok, = Ok - %:%(Jgkz - 82 + J;ka + 82 + Jng_ 2 - ’gkz + 82>

=R /gkz -2 + 1K [, 2 + &2 ()

so that the sum is given by
2

Zrkdkr

k=1

[0y, + Ip05, =T (clr - “2r>

r (R.J;la -s2 3 iI,/le + s2 -R §22 - 82 - iI.J§2 +52>
(45)

Thus if we consider only zero tail incidence_ip so that oy = ap= o,
and. recall that for steady straight flight R = Usf + iUga, the last
integral of equation (34) can be written in the form

Z_m 'c—:l §2 §2
e - soncen [ ([E 5 [ETE)e)-
TR Kea o so 2 802 502 le)

8¢

el 2. )
s gl s2 §2 82 x?
U, EI'If ° -+ - + a
folet:Te) A 802 802 502 802 | 's'o' +
x(d - ct?
A ) (46)

The last term of this expression is the contribution of the integral between
the trailing edge of the wing and ‘thé apex of the teil; that is, where

8 = 0. The vortex positions {; and {o =and the circulation I' are given
by equations (6) and (7), respectively.
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The integrals sppearing in equation (46), which is velid for any
plan form with straight trailing edge, are of precisely the same form as
those encountered in equation (21) for the pitching moment and may be
treated in an analogous manner (for triangular plan forms) by meking use of
the Appendix. In ‘the present case the second integral of equation (46)
bhas a discontinuity of the real part of the square root, and the imaginary
part vanishes, when the vortex passes through the vertical tail. Thus
sketch (d), page 16, is applicable to such cases if we interchange the

-labels on the two curves. The condition for the vortex passing through

the vertical tail is yi = O for 2z, S Smp < 83 vhere Yy, and z; are given
by equation (6). Thus if hp = ip = O, this condition becomes (for trian-

gular plan forms) " . Q- 5 (d.-c '>
Ap \ /AN cxcer (¥7)
o

H
8 80
l-ia.< -2
T

If equation (47) is satisfied, then the second integral of equation (46)
mist be divided in a menner exactly analogous to that shown in equa-
tions (23) to (26a).

yi = 0 for

Finally, the interference rolling moment for the wing-teil combination
of sketch (h) is obtained by substituting equations (35), (41), and (46)
into equation (34%). The coefficient C;. based on the wing spen 2s, is
given by this result divided by pUo®Sysg. Now, since the rolling moment
of the symmetric cruciform tail alone is zero (see ref. 3), and the rolling-
moment coefficient of the isolated triangular wing is (see ref. 10)

C.L'W = -%: af ()'I'8)

the total rolling-moment coefficient for the combination of sketch (h) is
found by adding this to the above result for C7'I‘

Calculations have been carried out to determine the rolling moments
for a wing-tail combinstion of triangular plean form having zero tail height,
a tail-length ratio d/sy, of 6, and a span ratio s3/sq of 1. The varia-
tion of C; with B was calculated at two angles of attack and the result-
ing curves are presented in figure 10. It can be seen that at both angles
of attack the variation of rolling moment with angle of sideslip is quite
nonlinear and has a sharp pesk at the angle of sideslip at which the star-
board wing vortex strikes the vertical tail according to equation (31).
However, the pesks are in opposite directions so that the curves cross one
another. The reason for this behavior lies in the vertical location of the
impinging vortex relative to the axis of the teil. At o = 0.1, the vortex
striking the tail lies close to the tail axis and therefore, due to its
direction of rotation, induces a large negative rolling moment at the
critical sideslip angle. On the other hand, at o = 0.2, the vortex strikes
the vertical tail near its upper tip and therefore induces a positive roll-
ing moment because of the velocity gradient associated with the vortex.

For purposes of comparison, the rolling moments of the wing alone from
equation (48) are also shown on figure 10 and it can be seen that the
rolling moments are heavily influenced by wing-tail interference,
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Cruciform Wing and Cruciform Tail

The method used in the foregoing analysis of wing-tail combinations
having plane wings could equally well be applied to those having cruciform
wings if one had snslyticasl expressions for the positions of the rolled-up
vortices behind such wings. For the special case of an equal-span cruci-
form wing in steady straight flight at 45° angle of bank, these vortex
positions have been determined analytically in reference 13. Consequently,
the longitudinal characteristics of a wing-tail combination of the type
shown in sketch (i) (the so-called “interdigitated" arrangement) can be
studied in exactly the same way as was the arrangement shown in fig-
ure 1(b), if equations (6) are replaced by the expressions of reference 13
or reference 3 for the positions of the four rolled-up vortices.

Sketch (i)

(Note, however, that ref. 13 uses wind axes.) It has been shown in
reference 3 that the four vortices are of equal strength given by

T = A2 U s oy ) (49)

Now, if we recognize once again that the vertical tail has no influ-
ence on the purely longitudinal charaecteristics, a comparison of the base
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cross section shown in sketch (Jj) with that of sketch (¢), page 11, will
show that equations (11) to (14) are directly applicable to the present
case. Thus by simply extending the sum-
metion of equation (12) over four rather
than two symmetrica.lly placed vortices,
we find, since o0, = -0; and 0, = -Og T
that C

4 = -t
Zr‘kckr I'<01r + T1p, + 05 + 63r>

oF
k=1 : , - \
R
D
Cs

or R( o1, + osr> (50)

Hence the counterpart of equation (1L)
is found to be, after simplification

-r
C
bs

4
R - S b - =~
erkckr = 1. (b/5) R s(gl +8g) £, =

Sketech (j)

[T D

The interference 1lift and side force can now be obtained directly from
equation (15) from which it follows that the interference side force
vanishes since the above sum is real. At this point it should be noted
that the quantity R(§, + £3) is e constant behind the wing, being equal
to the lateral distance between the centroids of vorticity of the two
halves of the wake. In fact, since the circulation distributions on the
two camponent wings of a cruciform wing banked 450 are identical ellipses
(see ref. 3), it follows that

1!80

R(L, +85) = 7 (52)

With this relation, if we note that immediately behind the wing s=b=0,
we can substitute directly into equation (16) for the interference lift.
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Thus, making use of equation (51), we find

2‘\,2— 2 j 2 ( -b2
LT = ————— pUo- oS ¢ -8.2(1-2) +
T PYAN o wsSo| R 1y 1 o2 A
2 %
Rjgszz - 512<]_ - 2—2' - v 8¢ (53)
1

and the positions l’_;lz/so and Qsz/so cen be obtained directly from

figure 2 of reference 3 for any given tail length. Now:since the lift
of the cruciform wing glone is the same as the 1ift of a plane wing of
‘the same span (see ref. 3), it follows that the total 1lift coefficient,
based on the area of the wing, for the cruciform wing-tail combination
of sketch (i) is, for any plen form with straight trailing edge,

8,2 NA ;252 2
1 Agony e B S AT

+ -
80° 1-'(b/s)z 802 8% 82

Cr = %‘Aw(:mw + op

[
37 5, < b2 o
R 802 Soz l 82 Z 21\/5. (5).'-)
Calculations have been carried out to determine the lift curves for
several combinations having zero tail height, zero tail incidence, and
zero tail thickness using equation (54). Furthermore, the aspect ratio
of the wing was taken as 2, so that the only parameters investigated here
are the tail-span-to-wing-span ratio sl/so and the tail-length ratio
d/so. The resulting lift curves are presented in figure 11 for a fixed
tail length with several values of sl/so and in figure 12 for a fixed
ratio sl/so with several tail lengths. It can be seen thet the general
character of the lift curves is very similar to that of the plane wing-
tail combinations with tail heights different from zero. Here again
there is a critical angle of attack at which the vortices strike the tail
trailing edge, as can be seen by examining sketch (i), page 32. There
are several important differences in this respect, however, between the
characteristics of the plane and cruciform combinations. Due to the
orientation of the vortices at the wing trailing edge with respect to
the tail of the cruciform combination, au, depends on s,/sy as well
as on hT/so and d/so and no tail height is required for the existence
of a critical angle of attack. On the other hand, the change in lift-
curve slope at the critical angle is not so great for the cruciform since
only half of the wing vortices strike the tail there. Also, in figure 1l
since hp = 0, there is complete symmetry with respect to angle of attack
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and we find a negative critical angle equal to the positive one. At the
negative critical angle, the upper two vortices strike the horizontal
tall wherees at the positive critical angle it is the lower two vortices.

A final point that seems worthy of mention in this discussion con~
cerns the existence of a so-called "leapfrog" distance for the cruciform
wing at 45° benk. This is the distance behind the wing et which the upper
two vortices pass between the lower two due to their mutual induced
effects. It is clear that if the tail location and span are such that
the vortices strike the teil trailing edge at the leapfrog distance d=dj,,
a meximum effect may be expected. According to equation (60) of refer-
ence 3, the tail length for this condition is

dr, Ay  9.328
== = §,66h — = 2=
5o o, " o (55)
Hence the critical angle of attack for this maximum effect is given by
9.328
= er— 56
i ’t(d/so) ( )

Also from figure 2 of reference 3 it is found that if all four vortices
are to strike the tail, the ratio of tail span to wing span s,/s, would
heve to be not less than 0.9 and the tail height ratio hT/so would be
equal to about 1.9. It should be pointed out that for the cruciform
wing-tail combinations for which most of the calculstions were mede here
(d/sg = 6) the value of ocy predicted by equation (56) is probably well
beyond the renge of validity of the present theory (acr = 28%). However,
for the case d/so = 12 (see fig. 12) if the tail were raised so that
hT/so 1.9, we should expect that the gentle dip in the 1ift curve shown
8t a = 0.06 would be replaced by an abrupt dip at o« = 0.247 = 14.2°.

Due to the complexity of the expressions given in reference 3for
the vortex positions ¢, and {g, a direct application of equation (2)
to obtain analytical expressions for the pitching moment appears to be
virtually impossible. Consequently, rather than to embark on a program
of numerical calculations, it was decided to approximate the pitching-
moment variations by assuming that the center of pressure of the tail
remains at its 2/3-chord position in spite of the vortices. Hence,
since the pitching moment of the wing alone sbout its 2/3-chord point is
zero, the total pitching-moment coefficient of the wing-teil combination
about that point is given approximestely by (see footnote 4, page 25)

on ~ -orp(3+1-1) (57)

where the pitching-moment coefficient is based on the wing area and wing
chord and the coefficient CLT' refers to the lift on the tail in the
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presence of the wing wake. The resulting pitching-moment variastions are
presented in figures 13 and 14 and it is seen that they are comparable
with the variations for the plane wing-tail combinations having varying
tail span. The above discussion of the 1ift curves can in fact be
extended to the pitching-moment curves in comparing the characteristics
of the cruciform interdigiteted wing-tail combinations with those of the
Plane wing-tail arrangements with high tails.

The influence of tail length on the value of the critical angle of
attack and on the values of the pitching moment at that angle are clearly
shown in figure 13. It can be seen that doubling the tail length reduces
the critical angle of attack by one half, but does not change the value
of the pitching moment at the critical angle. As a. matter of fact, it
can be shown that, for given values of sl/so 3 8o, and im, the pitching
moment of equstion (57) is a function of the parameter a(d ?so ) only.
Hence, if we plot Cp vs. a(d/sg), all the points calculated for
figure 13 will fall on a single curve; therefore, figure 14 is plotted
in this menner. Figure 14 shows the effect of span ratio s,/s; and
it is noted that the maximum effect at the critical angle is experienced
for s3/sg = 0.6. Howevér, due to the change in relative vortex posi-
tions with distance behind the wing, the value of the critical span ratio
will depend on the tail length for cruciform wing-tail combinations. It
can be seen from figure 1 that if the ratio of tail span to wing span is
sufficiently large (see s;,_/s° = 2),the nonlinearity associated with the
critical angle of attack is diminished substantially and the pitching-
moment curve becomes practically linear with angle of attack. The same
statement can of course be made in regard to the plane wing-tail combina-
tions treated earlier since the lift of a large tail surface overshadows
the interference effects.

PITCHING AND PLUNGING FLIGHT

So far the cases considered in the present report have been confined
entirely to steady straight f£flight.. However, the expressions of eque-
tions (1), (2), and (3) are directly applicaeble to quasi-stationary
motions (i.e., to unsteady motions whose frequencies are small compared
with the flight velocity divided by the length of the body). In this
section, we shall consider longitudinel motions of this type with the
purpose of calculating the forces and moments acting on a plane triangular
wing-tail combinstion which is pitching and plunging at an angle of
attack oy. The term pitching refers to an angular pitching velocity
(q 74 0); the term plunging refers to a time rate of change of angle of
attack (& £ 0).

I'b can be seen from equations (1) and (2) that the time derivative

B‘b ZI‘kcrkr is required for the calculation of the desired forces and
k=1
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moments, so we must now express the positions and strengths of the wing
vortices as functions of both x and t+ for the motions Jjust described.
In order to do this, we will first assume that the strength TI' of each
rolled-up vortex at a distance x, behind the wing is equal to the value
of I' +that existed at the trailing edge when the trailing edge occupied
that position in space. That is to say,

vhere ti 1is the time required for the wing to advance a distance x;.
Hence +t; = X;/U, and we have

P=FTE-

g %) (58)

ot o

Now I'pg is given by the jump in potential A@ at the wing trailing edge
which depends only on the angle of attack at the trailing edge. Thus for
the pitching and plunging case, since @ dJdoes not depend on &,

I'me = 28o[Ugayy + ale - c;)] (59)

where c; is the distance from the wing apex to the pivot point of the
pitching motion. Note that this expression reduces to equation (7) if
q = 0. Now, substituting equation (59) into equation (58) we f£ind that
the strength of the rolled-up wing vortex is given by

It has been assumed here that ¢ = O.

The vortex position remsins to be expressed as a function of
x and t, but this can be done in a manner parallel to that for the steady
case. Thus the slope z;/0x is given by the velocity of a two-
dimensional vortex pair of strength I'(x,t) spaced (n/gbso apart. The
vertical position 2z, of both rolled-up vortices relative to the tail is

therefore (see sketch (k))
I////zRolled-up vortices
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. T p(x,t)
Zq = G,‘,Txl - hT - lT(d - x:_) - W
(o] oYo

X, - By - ip(d - x,) - —{[ - - (e - cl)]-xl - "":;12} (61)

o

which reduces to equation () if q = & = 0. Now for zero sideslip the
lateral positions of the wing vortices are again independent of x, and
we have corresponding to the expressions of equation (6)

J

14 . 7 i éxz.a
;l= ‘Eso-i<h.T+d.1T + ix, O'W( +iT ? c-G3 +1-t. Uo
f(62)
7 . [ 2 i &x,°
§2=-E so-1<hT+d.iT> + inqu,f@.-—ﬂ2> + iT--— 1 (c c1> +-;t' Uo
/

Note that the plunging motion & introduces a quadratic dependence of
the vortex positions upon the distance x, as shown in sketch (k), while
the pitching motion q causes no additional complication over the steady
angle-of -attack problem. It should also be pointed out for the purpose
of taking derivatives with respect to time that the only time-dependent
quantity in equations (60) and (62) is the angle of attack ay, assuming
that @ = O.

For the purely longitudinal motions being considered here, the
inverse transformation for a t]znin elliptic-cone teil is given by eque-

tion (11) and the summation Zrkakr is the same as was given in

k=1
equation (lll-). The difference in the two cases, of course, (i.e., the
steady and the unsteady) lies in the more complicated expressions of
equations (60) and (62) for the strengths and positions of the vortices.
Now, according to equaetion (1), the interference side force and lift for
the present case are given by

m
Y - iLy = -ipU, Zrkﬁkr Zrk‘dkr -
=1

=XTE+
ipf 3% ka&kr dx (63)

I]E k:l
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and once more the interference side force vanishes due to symmetry. The derivative 3¢ Ll‘kcky
=1
over the tail is obtained by differentiating equation (14) with respect to time t using equa-
tions (60) and (62) for I' end §, and noting that

CelE NI VOvN

Sﬂt. = 20U, 8,4
(6%4)
and

of . C ix '/l- o2\
'S;' :LG.K .1'_(2-} J

In this manner, one finde, after some manipulation, that the interference lift of the plane trianguler
wing-tail combination is, according to equation (63)

honzs(;2 gl 8 b2 b
I'm[““a(c °1)“— R./ L (L) E R eece? o+ (e - )] -
i ],I_p&UOSo a axy L
1 -_(b/s) )[ f-"w + g (c ay) ]I{ §;|_ = 32[1 ) } . (b/ ) npU, a8, e +
pU .03 a(d-c') + .EEU_QE_B.Q. ¢ »./t - 82[1 - ('bE/s"’ﬁ dxy (65)
o 1 "(b/ﬂ) A= * -

where the thickness ratio 'b/s is again constent over the tall, Now for the lsolated wing and tall,
the lifts due to the pitching and plunging motions ere edditive, and the 1lift coefficients, based on

6€



‘the wing area are given according to slender-body theory by (see, e.g., ref. 10) -1

-
L +—(c c)J 4 2n 889 (66)
3 Uo N
|- if n\-lJ_EﬂdsoiJ;Ec_,. P&
N A A I i (&)

Consequently, the totel 1Lift coefficient, based om the area of the wing, for the pitching and ;plu.ng:l.ng
wing-tail combination of figure 1(b) is, from equations (65), (66), and (67

8,2 T :rd-ﬂo. 818 o!
(."I'“-én‘b‘wsoE me-!-—(?- cl)] 3 U (l+ CAry

Bo
2y [ 4 ad 1 glzg 5.7 1 @ %D
1- (o/e) -WJ'E(G'%)'I?S]R 'EZE-ESE('?:)'I; -
, | ’ - ]
. a . e
l-l(b/s)EA;:BO( ﬁ).,!i:? 'ﬁ[ Uq; (¢ - cy) - E%-]I % s: 20 ( )
| e (1-%)
'b{:/s ghé%:-bgh&(du-oc')*- 1l :;b/B) Uo d-c Rj 31025 (l B ‘:-;:)'d (%)v (-68) E

vhere the expression for ¢, is given by equation (62). I'b can be seen that the 1lift 1s a nonlinear
function of all three independent varisbles oy, &, end g. Furthermore, the lift cannot be correctly

Gele NI,
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calculeted by adding the lifts due to each of the three motions since
equation (68) conteins products of the independent variables. That is,
the lift due to pitching and plunging for the wing-teil combination is
not equal to the sum of the 1ift due to pitching and the lift due to
plunging. : _

In reference 10 formulaes were given for the stability derivetives
of first and second order for slender wing-body combinetions. In that
analysis, ‘as in the present one, it was found that the forces and moments
were nonlinear with respect to some of the motions considered. However,
in the analysis of reference 10, the forces and moments depended only on
the first and second powers of the independent varisbles so that it was
convenient to define stability derivatives with all of the independent
varisbles (including the angle of attack) set to zero. In this way the
conventionsl stability derivatives could be obtained by a combination
of & small number of the derivatives of reference 10 and the latter had
the advantage of bringing out .a number of useful relationships emong the
various stability derivatives.

In the present anelysis, on the other hend, the nonlinearities of
the forces and moments including wing-tail interference are of a more
complicated nature. The appearance of the square root involving a quad-
ratic function of all the independent variables in' the expressions for
the 1lift and pitching moment indicates that sn infinite ‘number of stebil-~
ity derivatives of the type used in reference 10 would be required to-
obtain the commonly used stability derivatives. In other words, the
- forces and moments in the present analysis contain all orders of the
independent - variables, as can be seen by expanding the square root.
Consequently, the stability derivatives in the present analysis (includ-
ing C ) will be defined as the appropriate partial derivatives evaluated

with all the independent variaebles except the angle of attack set to
zero. Thus the stability derivatives will all be functions of the angle
of attack o and one must use the derivatives corresponding to the
equilibrium angle of attack sbout which small oscillations are to be
executed if the motion is to be calculated by means of the stability
equations. This presumes, of course, that the equilibrium condition is
steady straight flight at an angle of attack o, at zero sideslip.




With the above definitions, it is easily found from equations (68) and (62) that
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The evalustion of the quantities appearing in the expression for CI'a
is actually no more complicated than the evaluation of the integral

already treated in finding the steady pitching moment (see eq.''(21)),"
since the imaginary part can be taken after the integration. That is,

the integral containing the imaginary part can be separated into integrals
of the type '
£ at a_nd f 24 _ - ¥
NX NX :

where X = B + CE + DEZ as before. Both of these integrals are reducible
to that of equation (25) end can be handled in the same way.

It should be noted that, although the above expressions were derived
for triangular wing and tail, equations (69) and (70) for Cr,, 82d CLq_

are actually independent of plan form and are velid for arbitrary slender
plan forms so. long as the trailing edge is normal to the x axis. The
quantity b/ s then refers to the value at the trailing edge of the tail.

Calculations have been made to determine the first-order stability -
derivaetives ch.’ CLq_’ and ch, for two tail heights and for two ratios

of tail span to wing span. The aspect ratio of both wing and tail was
taken as 2, the tail length ratio d/so = 6, and the tail incidence and
teil thickness were set to zero (iT = b/s = 0). The results are presented
in figure 15 and it is seen that the variations with angle of attack may
be apprecisble, even for the tail lying in the plane of the wing.

The two span ratios were chosen for the calculetions so that one
falls on either side of the critical span ratio (s,/s, = x/4t). The varia-
tions of the stability derivatives shown in figure 15 are clearly more
severe for the larger span ratio (sl/so = 1) since, for span ratios
greater than the criticel, the trailing vortices strike the tail trailing
edge at the critical angle of attack. It can be seen that for s;,_/so =1
and agy = 0.2 both Cp, and Crg Jump from a negative value to a large
positive value as the critical angle is exceeded. For the lift-curve
slope cLa.’ this was already noticeable in figures 2 and 3 showing the

steady lift curves for the same configurations. It will also be noted
in figure 15 that for si/sc = 1 the derivatives Cr, and CLq_ have their
minimum values at the critical angle of attack, even for daepr =0 (i.e.,

wing and.-tail in the same plane). This is notthe case with.the deriva-
tive CL&' The discontinuities in Cch. and CL&' at the critical angle

of attack for aer 74 0 are evidently removed and the variations with
angle of attack considerably reduced if the ratio of tail spen to.wing
span is reduced below the critical value.

For the case of wing and. tail of equal span in the same plane, Cr,
is doubled as the angle of attack increases from 0° to 12°. On the other
hand, if the tail span is half the wing span, the increase is only



NACA TN 3725 & b5

about 25 percent. The variation of 'Ci,q is about 6 percent for the
equal-span wing-tail combine.tion and about 5 percent for sJ_/so = 0.5
over the seme angle ‘range.

It has already been mentioned that in reference 10 a number of rela-
tionships were obtained smong the stability derivatives for wing-body
combingtions by evalueting the derivatives at, o = O. Although, as
already discussed, there seems to be little point in defining stability
derivatives for wing-tail combinations in the same manner, it is never-
theless of interest to see whether a similar type of relationship can be
found at = 0. In fact if we set oy = 0, it becomes epparent that
equations (69) and (70) are then related according to

(o), * (52 + (52 (o), =t

or
c-c d ) .
(o), () () O
< axr=0 h c =0 :
so that at oy = O for the wing-tail combination cen be calculated
~from the lift-curve slope of the combination at oy = 0 and the lift-curve
slope of the isolated tail. If there is no tail = 0 and equa- -

tion (72) reduces to the relationship given in reference 10 between CLg_
and cLa. for wing-body combinations, with the chord c¢ as the reference
length.

LIMITATTIONS OF THE THEORY

It has been assumed in the foregoing anaiysis that the vortex sheet
leaves the wing trailing edge as a flat sheet and that it becomes fully
rolled up ahead of the tail. The former assumption does not admit sepa-
ration of the flow from the wing surface and therefore implies small
angles of attack. The letter assumption, on the other hand, seems to
imply a high angle of attack. Actually, it requires that the tail length
be greater than the distance in which the wing vortex sheet becomes Pully
rolled up, that is (see, e.g., ref. 3 or 12),

e _ Ay . a_
‘25_0 =ky —< (73)

Cry 280
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vhere k, depends on the circulation distribution. According to Kaden
(ref. lh% the value k; = 0.28 gives the distance required for the vortex
sheet behind a plane wing with elliptic circulation distribution to
become “essentially rolled up." It can be seen from equation (73) that
the restriction imposed on the configurations which can be treated becomes
more severe as the angle of attack approaches zero. Hence the present
calculations might be considered as e "moderate angle-of-attack" analysis
for slender wing-teil combinations.

In view of equation (73), it is interesting to consider other analy-
ses in which wing-tail combinations have been treated under the assumption
of a flat vortex sheet lying in the plane of the wing and tail. The
requirement for such results to be applicable is clearly

a
= = kl A'W >
2s¢ Crer 2s¢

(%)

The "much greater" sign is introduced because the assumption of such
analyses is not simply that the vortex sheet is not fully rolled up at
the tail but rather that it remains completely flat:- hence the more
stringent requirement. It is evident then that if a wing-tail combina-
tion with a low-aspect-ratio wing is treated under the ebove assumption,
the results are applicable only for venishingly low lift coefficients or
for extremely short tail lengths. There have recently been some such
analyses (e.g., refs. 15 and 16) in which wing-tail combinations are
treated with no apparent restrictions on aspect ratio or tail length.
The results of such investigations when applied to low-aspect-ratio wings
or sizeble tail lengths should be viewed with caution. It should also
be mentioned that the analyses of references 15 and 16 can lead only to
stability derivatives which are independent of the angle of attack.
Furthermore, the vortex sheet is assumed to lie in the plane of the tail
at all (smell) angles of attack. Although the vortex sheet does indeed
lie in the plsne of the tail at o =0 (for hp = 0), the derivatives
calculeted at o = O may nevertheless be in error since no account hes
been taken of the change of position of the vortex sheet with angle of
attack. ;

In reference 15 the conclusion is drawn that the 1ift induced on the
tail by an angle of attack of the wing in forward flight is equal to the
1ift induced on the wing by an angle of attack of the tail in reverse
flight. That this conclusion is not in agreement with the present analy-
sis can be seen by examining equation (17) for the interference lift in
steady straight flight. For the slender case, as is treated in the
present paper, reversal of the flight direction has no influence on the
given expression other than to interchange s, and so. It is clear then
that the above conclusion agrees with the present analysis only for the
obvious case of sl/so = 1. The difference, of course, stems from the
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different assumptions regarding the vortex sheet shed by the wing. The
appropriateness of the different assumptions can only be checked by
experiment. -

A further assumption of the present analysis is that the positions
of the vortices shed from the wing are not influenced by the presence of
the tail. Thus the vortex lines coincide not with the actual streamlines
but with the streamlines in the sbsence of the tail. Hence, while the
condition of no flow through the teil has been satisfied in the analysis,
the vortices have nevertheless been permitted to penetrate the tail
surface. In fact the most dramatic effects on stebility are predicted
for conditions under which the wing vortices either touch or pass through
the tail. Although the present assumption that the tail does not influence
the vortex positions is commonly made in calculations of wing-tail inter-
ference, the implications mentioned ebove seem to warrant investigation of
this point. Therefore an experiment wes conducted to investigate the
influence of the tail on the vortices shed by the wing. This experiment
will be discussed in the next section.

The rolled-up vortices were assumed in the analysis to be ideaslized
line vortices having no viscous cores. This assumption will have no
effect on the calculated results so long as the cores do not touch the
tail. However, when the distance from the tail to the center of the .
vortex is smaller than the radius of the core, the viscous core will
change the downwash distribution at the tail location and affect the
calculated 1lift on the tail. In order to get some idea of the order of
magnitude of this effect, a celculation was made by the method of reverse
flow (see ref. T) to determine the T
lift on a plane tail in the presence

r
of two viscous vortices whose centers
intersect the trailing edge of the

tail as shown in sketch (1). For

this calculation, it was assumed that
the cores rotete as solid bodies,
giving the downwash distribution

shown in the sbsence of the tail. It
was further sssumed that the cores lay
entirely within the span of the tail
as shown, and thet the span loading

of the tail in reverse flow is ellip-
tic. With these assumptions, it was

found that if the vortex centers are
located at y = isl/2 and the core
radius is s,/4 (as shown), then the L ' A1110 ]

Y
negative 1ift on the tail due to the
vortices is reduced by 12 percent
from that calculated with no cores.
Now, since the centers of the vortices
were assumed to intersect the tail
trailing edge, the sbove calculation " -
corresponds to o = der. Furthermore, ' Sketch (1)

-Sq 84
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since the viscous cores can have no effect on the tail 1ift if they do
not touch the tail, it can be concluded that the over-all effect of the
viscous cores on the calculated lift and pitching-moment curves of fig-
ures 2 to 6 will be simply to round off the sharp peaks at o = dep.

Although the present analysis has been restricted to slender wing-
tail combinations for which the vortex sheet leaves the wing as a flat
sheet, it is importent to note that the origin of the trailing vortices
1s immeteriel to the method of calculation of wing-tail interference.

If, for example, the wing is a delta wing with sharp leading edges, there
mey be separstion vortices above the wing. These can be handled by the
present method, provided that their positions and strengths over the wing
are known. Similarly, if the wing is a sweptback wing (not necessarily
slender), the vortices from the wing may be caused to roll up quickly
because of tip-stalling or other viscous phenomena. Nevertheless, if

the tail is slender and the vortices are rolled up ahead of the tail, the
technigues used in the present analysis are still applicaeble for the
calculation of the interference forces and moments. As a matter of fact,
pitching-moment curves having the same general nonlinear character as
those of figures 2 and 3 have been measured on swept-wing airplane models
having high tails (see, e.g., refs. 17 and 18). Some of the trends in
directional stability which have been calculated in the present report
are also evident in the data of reference 18.

WATER-TANK EXPERTMENT

In order to investigate the influence of the tail on the paths of
the vortices shed by the wing, e simple model was constructed consisting
of an identical triangular wing and tail mounted on a thin plate, as
shown in sketch (m). The plate acted as a model support and was attached
to & rack which was driven vertically into a water tank by & gear mounted
on an electric motor. The wake of the wing was made visible on the sur-
face of the water by means of white poster paint applied to the beveled

Sketch (m)
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trailing edge of the wing. As the wing passed through the water surface,
the paint remained on the surface and the resulting wake patterns were
Photographed from sbove by a motion picture camera. The wing end tail
were flat plates with rounded leading edges and beveled trailing edges,
and the central plate was cut down to minimize its influence on the wing
veke (see sketch (m)). The tail was mounted at zero incidence (ip = O)

in & teil-high position (hp/sq = 0.96) so that at a critical angle of
attack (Gcr = 0.2) the analysis will predict that the wing vortices inter-
sect the tail at its trailing edge.

The model was driven into the tank et three angles of attack, one
below, one above, and one at the calculated critical angle of attack,
and selected frames of the motion pictures obtained are presented in
figure 16. The verticel and horizontel lines on either side of the frame
are reference markers which are fixed relative to the tank (i.e., relative
to the flight direction). The first picture in each case shows the vor-
tex sheet leaving the wing trailing edge as a flat sheet.® At this point,
the wing trailing edge has just penetrated the water surface, and the
strut connecting the wing and tail can be seen above the water surface.
For o = 12° and 16° the tail is also visible but is out of focus, being
closer to the camera. The second picture in each series shows the tail
entering the water surface, and the remaining pictures show the develop-
ment of the wing wake at various positions over the tail until the last
frame shows the wing wake at the trailing edge of the tail.

In figure 16(a) there seem to be no obvious effects attributaeble to
the tail, but the mounting strut has & marked effect on the shape of the
center of the vortex sheet. It can be seen that the upward sweep of the
center of the sheet follows the retreating edge of the strut.

Figure 16(b) shows the development of the wing wake over the tail at
the calculated critical angle of attack. According to the analysis in
the foregoing sections of this report, the wing vortices should intersect
the tail at its trailing edge at this angle of attack. It was in fact
largely this prediction that prompted the present experiment, in view of
the discussion of the previous section. It is apparent from figure l6(b)
that, although the vortices are quite distorted at the trailing edge of
the tail, the centers of the vortices do very nearly coincide with the
tail trailing edge. The tail seems to split the viscous cores of the
vortices at the critical angle of attack. The asymmetry of the center
portion of the vortex sheet seen in the photographs is probasbly due to
an asymmetric disturbance produced by the strut.

In figure 16(c) a higher angle of attack is shown and the teil appears
to sever the vortex sheet and produce considersble distortions sbove the
surface of the tail.

SSubsequent detailed investigetion has shown the existence of a rela-
tively weak pair of separation vortices above the wing surface at all of
the angles of attack studied here.
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The distances behind the wing as shown on the sbove-mentioned pic-
tures were measured by means of a tape which moved with the model and
recorded on the film the distance between the wing trailing edge and the
water surface. Thus it was a simple matter to obtain quantitative measure-
ments of the vortex paths, provided the centroids of vorticity of the
vortex sheet could be defined. Actually it is not possible to define these
positions accurately from photographs, but it was assumed that the lateral
position of the centroid of vorticity of each half of the weke could be
teken as halfway between the outermost winds of the rolled-up portion of
the sheet. The results of such measurements are shown in figure 17 as
the variation of vortex span with distance behind the wing. The position
occupied by the tail is indicated in the figure and it can be seen that
the influence of the tail at all three angles of attack is such as to
decrease the vortex span at the trailing edge of the tail.

The theoretical asymptotic vortex span of (n/4)so for the wing alone
is in close agreement with the experimentally observed positions at the
lowver angles of attack until the influence of the tail is felt at the
station containing the apex of the tail. The sizable inward shift ahead
of the tail at the largest angle of attack is associated with the change
in ecirculation distribution on the wing as the angle of attack is
increased. Inasmuch as the interference 1ift calculated in the analysis
depends on the positions of the wing vortices at the trailing edge of the
tail, it would be of interest to calculate the effect on the interference
1ift of the observed ;nward movement due to the tail. However, the inter-
ference 1lift is a function of the vertical positions as well as the lateral
positions of the vortices, eand it was felt that the vertical positions of
the centroids of vorticity could not be defined with any degree of accuracy
because of the unrolled-up portion of the vortex sheet. It is interesting
to note that at the critical angle of attack 2z, = O and the interference
1lift does not depend on the lateral spacing of the vortices so long as
they lie within the spen of the tail. (This point has been discussed in
the section titled “Longitudinel Stability.") Consequently, at the criti-
cal angle of attack the influence of the tail on the vortex positions has
no effect on the interference 1ift for the span ratio tested. For other
angles of attack or for sufficiently smeller teil spans this will not be
the cese.

The systematic tendency of the teil to draw the vortices together as
observed in figure 17 suggested the possibility that the water-tank obser-
vations have been influenced by surface tension effects. Therefore,
observations were made of the three-dimensional weke patterns below the
surface of the water to see whether any significant changes were occurring
at the water surface due to surface tension. This was done by thinning
the poster paint so that some of it would adhere to the wing after the
latter was submerged, thus extending the visible wake patterns below the
water surface. Observations were made at various angles of attack, and
it was found that no surface tension egfects were discernible as long as
the angle of attack was greater than 6 . Below that angle of attack,
the difference between the patterns on the surface and below it became
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visible. Apparently, the criterion of a low Weber number (ratio of sur-

face tension forces to dynamic forces) was sa‘tlsfied for angles of attack
above 6°.

The assumption made in the analysis that the vortex sheet becomes
fully rolled up ahead of the tail appears to be substentiated in the case
of the model tested here.

CONCLUDING REMARKS

A theoretical investigetion has been made of some of the aerodynamic
characteristics and stabllity problems associated with slender wing-tail
combinations. The vortex sheets shed by the wing heve been assumed to be
fully rolled up at the tail and to follow the same paths as calculated in
the absence of the tail.

Mathematical expressions have been derived for the interference
forces and moments acting on the taill. From these, calculations have been
made of the effect of changes in tail height, tail length, tail incidence,
tail thickness, and ratio of tail span to wing span. The calculated
variations of forces and moments with angles of attack and sideslip were
found in some ceses to be highly nonlinear. Changes in the height of the
horizontal tail and in the ratio of tail span to wing span were found to
have a pronounced effect on static stability as well as on the stebility
derivative CL& The calculated results indicated a definite critical

angle of attack for a given wing-tail combination and a criticael ratio of
tail span to wing span at which abrupt changes in the aerodynamic charac-
teristics occurred in certain cases. In general, the most drastic effects
are predicted when the vortices shed from the wing strike or pass near the
tips of the tall trailing edge. .

A water-tank experiment was conducted in order to observe the
behavior of the wing wake in tThe presence of the tail. A plane-wing-tail
combination with a high tail was tested and photographs indicated that
the tail caused the wing vortices to be shifted inboard apprecisbly for
the case tested (wing and tail of equal spen). The vertical positions,
however, were apparently relatively unaffected, and the tail was observed
to sever the vortex cores at the calculated criticel angle of attack
(within the experimental accuracy).

The influence on the calculated results of the assumptions made
regarding the vortex wake have been considered, and a conclusion drawn
on the basis of a flat vortex sheet in the plane of the tail was compered
with the results of the present anslysis. The choice of such assumptions
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must in the last analysis be made on the basis of experiment, and for the
cases treated in the present paper the assumption of the fully rolled-up
vortex sheets seems justified, provided that the tail length is not

extremely short.

Ames Aeronsutical. Laboratory
National Advisory Committee for Aeronsutics
Moffett Field, Celif., May 2L, 1956
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APPENDIX

23

EVALUATION OF THE IMAGINARY PART OF A COMPLEX SQUARE ROOT

A complex square root of the type J §2 + ¢® vhere ¢ = y + iz
end c¢ 1is real has branch points { = *ic and can be written in its

factored form

NEE + 2 = (6 - ic)(t + ic)

Now each factor can be written in
polar coordinates referred to one of
the branch points. Thus (see
sketch (n)) let

zZ

0y E=y+iz

ip |

§ - ic = p,e ,§;l-ic=p2ei*

where @ end ¥ are both limited to a
range of, say, -(x/2) to +(3x/2) (to
give the proper sign changes through
the line segment shown). This
ensbles one to write

=-C

v
1

gketch (n)

3 - om ei(mTwlm[“S(q’Z"’) wes(5)

80 that the imeginary part is

I_./t + ¢ = Jp,p, sin (q)—;—‘y)

where .
s - W]
o, = oz ¥ Gar 07|
o = e (252)
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=ta];_1<z+c>
v vy

The sign of the imaginary part of the square root is therefore determined
by the quadrants of ¢ and ¥ which depend on the position of the point

relative to the branch points § = *ic and also on the range of ¢ and ¥
specified above.

e
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{a) Coordinate system as fixed in the tail.

Figure 1.~ General orientation of wing and tail.
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(b) Type of configurstion treated for longitudinal stability analysis.

Figure 1.~ Concluded.
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Figure 2.~ Effect of horizontal tail height on the variations of 1lift
and pitching moment with angle of attack; plane triangular wing
and tail of aspect ratio 2, d/sg = 6, 8,/85 = 1, iy = bfs = 0.
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Figure 3.~ Effect of tail-span-to-wing-span ratio on the variations of
1ift and pitching moment with angle of attack; plane triangular wing
and tail of aspect ratio 2, d/sy, = 6, hy/sy = 0.9568, iy = b/sg = 0.
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(a) ht/so =0

Figure 4.~ Effect of tail length on the variations of 1lift and pitching

moment with angle of attack; plane triangular wing and tail of aspect
ratio 2, 8,/8o = 1, iy = b/sg = O.
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(v) b/se = 0.9568

Figure 4.~ Concluded.



NACA TN 3725 63

I 8
322; .6 Ky,/)b
o %_LAW4 ////ﬁ//:
ik
-32  -24 -Ji(//g/ 24 32
e///
N o
—3
\ o
BN
E\\\B\\\m\,l \ﬁ\\\a
L[
-32 24 _ -.IN:G-\ N\\i 32

-3
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Figure 5.~ Effect of tail incidence on the variations of 1ift and
pitching moment with angle of attack; plane triangular wing and
tail of aspect ratio 2, 8,/8g = 1, b/sy = 0, d/s, = 6.
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(b) nhy/s, = 0.9568

Figure 5.~ Concluded.
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Figure 6.~ Effect of tail thickness on the variations of 1ift and
- pitching moment with angle of attack; plane triangular wing and
tail of aspect ratio 2, 8;/s0 = 1, it = 0, d/sq = 6.
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(b) hy/s, = 0.9568

Figure 6.~ Concluded.



NACA TN 3725 67

.04
.04 o8
3 16 20 .24 28
B
© -04
-08
70y '
-12
-.16
a
a o
n .04
20 N .08
- A .12)Egs (15), (29), and (30)
o 16 qs. (I15), (29), and (3
@ .20
O 24
-24
-28

(a) to/sy = 0.5

Pigure T.~ Effect of angle of attack on the variation of side force with
angle of sideslip; plane wing with horizontal and vertical tail,
8,/80 = 1, /8y = 6, hy/s8y = iy = O.
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Figure T.~ Continued.
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Figure 7.~ Concluded.
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Figure 8.- Effect of angle of attack on the variation of 1ift coefficient
with angle of sideslip for all vertical tail sizes; plane wing with
horizontal and vertical tail, s,/sg = 1, /8o = 6, hy/ss = ig = O.
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Figure 9.~ Effect of vertical~tail size on the variation of yawing moment
due to sideslip with angle of attack; plane triangular wing with tri-
angular horizontal snd vertical tail, s,/sg = 1, d/85 = 6,
hi/so = it = 0, Ay = Ag = 2.
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Figure 10.~ Effect of angle of attack on the varistion of rolling moment
with angle of sideslip; plane triangular wing and cruciform in-line
tail, s,/so = 1, d4/sq
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Figure 11.- Effect of tail-span~to-wing-span ratio on the variation of
lift with angle of attack; cruciform interdigitated wing~tail
combination at 45° bank, d/sq = 6, hi/sg = it = 0, Ay = At = 2.
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X,/85 = 5.96
(a) « = 8°

Figure 16.- Photographs of the wing wake in the presence of the tail;
identical triangular wing and tail of aspect ratio 2, d/sq = 6,
hy/sg = 0.96, it = O.
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x,/80 = 5.78

(b) @ = 12°

Figure 16.- Continued.
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(¢) a = 16°

Figure 16.- Concluded.
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